Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Clin Exp Immunol ; 216(1): 45-54, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133636

RESUMO

Cold agglutinin disease (CAD) is a rare B-cell lymphoproliferative disorder of the bone marrow, manifested by autoimmune hemolytic anemia caused by binding of monoclonal IgM autoantibodies to the I antigen. Underlying genetic changes have previously been reported, but their impact on gene expression profile has been unknown. Here, we define differentially expressed genes in CAD B cells. To unravel downstream alteration in cellular pathways, gene expression by RNA sequencing was undertaken. Clonal B-cell samples from 12 CAD patients and IgM-expressing memory B cells from 4 healthy individuals were analyzed. Differential expression analysis and filtering resulted in 93 genes with significant differential expression. Top upregulated genes included SLC4A1, SPTA1, YBX3, TESC, HBD, AHSP, TRAF1, HBA2, RHAG, CA1, SPTB, IL10, UBASH3B, ALAS2, HBA1, CRYM, RGCC, KANK2, and IGHV4-34. They were upregulated at least 8-fold, while complement receptor 1 (CR1/CD35) was downregulated 11-fold in clonal CAD B cells compared to control B cells. Flow cytometry analyses further confirmed reduced CR1 (CD35) protein expression by clonal CAD IgM+ B cells compared to IgM+ memory B cells in controls. CR1 (CD35) is an important negative regulator of B-cell activation and differentiation. Therefore, reduced CR1 (CD35) expression may increase activation, proliferation, and antibody production in CAD-associated clonal B cells.


Assuntos
Anemia Hemolítica Autoimune , Humanos , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/metabolismo , Regulação para Baixo , Receptores de Complemento 3b/genética , Linfócitos B , Imunoglobulina M , Perfilação da Expressão Gênica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo
2.
Sci Rep ; 13(1): 17377, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833411

RESUMO

The pathological outcome of dengue disease results from complex interactions between dengue virus (DENV) and host genetics and immune response. Complement receptor types 1 and 2 (CR1 and CR2) mediate complement activation through the alternative pathway. This study investigated the possible association of genetic polymorphisms and plasma levels of CR1 and CR2 with dengue disease. A total of 267 dengue patients and 133 healthy controls were recruited for this study. CR1 and CR2 gene polymorphisms were analyzed by Sanger sequencing, while plasma CR1 and CR2 levels were measured by ELISA. The frequency of the CR1 minor allele rs6691117G was lower in dengue patients and those with severe dengue compared to healthy controls. Plasma CR1 and CR2 levels were decreased in dengue patients compared to healthy controls (P < 0.0001) and were associated with platelet counts. CR1 levels were lower in dengue patients with warning signs (DWS) compared to those without DWS, while CR2 levels were decreased according to the severity of the disease and after 5 days (T1) and 8 days (T2) of follow-up. CR2 levels were decreased in dengue patients positive for anti-DENV IgG and IgM and patients with bleeding and could discriminate DWS and SD from dengue fever patients (AUC = 0.66). In conclusion, this study revealed a reduction in CR2 levels in dengue patients and that the CR1 SNP rs6691117A/G is associated with the dengue severity. The correlation of CR2 levels with platelet counts suggests that CR2 could be an additional biomarker for the prognosis of severe dengue disease.


Assuntos
Receptores de Complemento 3d , Dengue Grave , Humanos , Proteínas Sanguíneas , Gravidade do Paciente , Polimorfismo Genético , Receptores de Complemento/metabolismo , Receptores de Complemento 3b/genética , Dengue Grave/genética
3.
Nat Commun ; 14(1): 5001, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591894

RESUMO

Genetic determinants underlying most human blood groups are now clarified but variation in expression levels remains largely unexplored. By developing a bioinformatics pipeline analyzing GATA1/Chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets, we identify 193 potential regulatory sites in 33 blood-group genes. As proof-of-concept, we aimed to delineate the low-expressing complement receptor 1 (CR1) Helgeson phenotype on erythrocytes, which is correlated with several diseases and protects against severe malaria. We demonstrate that two candidate CR1 enhancer motifs in intron 4 bind GATA1 and drive transcription. Both are functionally abolished by naturally-occurring SNVs. Erythrocyte CR1-mRNA and CR1 levels correlate dose-dependently with genotype of one SNV (rs11117991) in two healthy donor cohorts. Haplotype analysis of rs11117991 with previously proposed markers for Helgeson shows high linkage disequilibrium in Europeans but explains the poor prediction reported for Africans. These data resolve the longstanding debate on the genetic basis of inherited low CR1 and form a systematic starting point to investigate the blood group regulome.


Assuntos
Células Eritroides , Fator de Transcrição GATA1 , Receptores de Complemento 3b , Humanos , População Africana , Biologia Computacional , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Genótipo , Íntrons , Fenótipo , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Células Eritroides/metabolismo , População Europeia
5.
PLoS One ; 18(1): e0280282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36626386

RESUMO

Complement Receptor Type 1 (CR1) is a malaria-associated gene that encodes a transmembrane receptor of erythrocytes and is crucial for malaria parasite invasion. The expression of CR1 contributes to the rosetting of erythrocytes in the brain bloodstream, causing cerebral malaria, the most severe form of the disease. Here, we study the history of adaptation against malaria by analyzing selection signals in the CR1 gene. We used whole-genome sequencing datasets of 907 healthy individuals from malaria-endemic and non-endemic populations. We detected robust positive selection in populations from the hyperendemic regions of East India and Papua New Guinea. Importantly, we identified a new adaptive variant, rs12034598, which is associated with a slower rate of erythrocyte sedimentation and is linked with a variant associated with low levels of CR1 expression. The combination of the variants likely drives natural selection. In addition, we identified a variant rs3886100 under positive selection in West Africans, which is also related to a low level of CR1 expression in the brain. Our study shows the fine-resolution history of positive selection in the CR1 gene and suggests a population-specific history of CR1 adaptation to malaria. Notably, our novel approach using population genomic analyses allows the identification of protective variants that reduce the risk of malaria infection without the need for patient samples or malaria individual medical records. Our findings contribute to understanding of human adaptation against cerebral malaria.


Assuntos
Malária Cerebral , Receptores de Complemento 3b , Humanos , Eritrócitos , Malária Cerebral/genética , Malária Cerebral/metabolismo , Papua Nova Guiné , Receptores de Complemento 3b/genética , Seleção Genética , Genética Populacional , Índia
6.
Nat Commun ; 12(1): 7172, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887405

RESUMO

Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg-Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease.


Assuntos
Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Hepatopatias Alcoólicas/imunologia , Macrófagos/imunologia , Receptores de Complemento 3b/imunologia , Receptores de Complemento/imunologia , Animais , Translocação Bacteriana , Complemento C3b/imunologia , Enterococcus faecalis/fisiologia , Etanol/efeitos adversos , Feminino , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/microbiologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento 3b/genética
7.
Genes (Basel) ; 12(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946939

RESUMO

The presence of complement activation products at sites of pathology in post-mortem Alzheimer's disease (AD) brains is well known. Recent evidence from genome-wide association studies (GWAS), combined with the demonstration that complement activation is pivotal in synapse loss in AD, strongly implicates complement in disease aetiology. Genetic variations in complement genes are widespread. While most variants individually have only minor effects on complement homeostasis, the combined effects of variants in multiple complement genes, referred to as the "complotype", can have major effects. In some diseases, the complotype highlights specific parts of the complement pathway involved in disease, thereby pointing towards a mechanism; however, this is not the case with AD. Here we review the complement GWAS hits; CR1 encoding complement receptor 1 (CR1), CLU encoding clusterin, and a suggestive association of C1S encoding the enzyme C1s, and discuss difficulties in attributing the AD association in these genes to complement function. A better understanding of complement genetics in AD might facilitate predictive genetic screening tests and enable the development of simple diagnostic tools and guide the future use of anti-complement drugs, of which several are currently in development for central nervous system disorders.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Ativação do Complemento/genética , Encéfalo/patologia , Clusterina/genética , Ativação do Complemento/imunologia , Complemento C1s/genética , Proteínas do Sistema Complemento/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Receptores de Complemento 3b/genética
8.
Neurologia (Engl Ed) ; 36(9): 681-691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752346

RESUMO

INTRODUCTION: Alzheimer disease risk polymorphisms have been studied in patients with dementia, but have not yet been explored in mild cognitive impairment (MCI) in our population; nor have they been addressed in relation to cognitive variables, which can be predictive biomarkers of disease. OBJECTIVE: To evaluate cognitive performance and presence of polymorphisms of the genes SORL1(rs11218304), PVRL2(rs6859), CR1(rs6656401), TOMM40(rs2075650), APOE (isoforms ε2, ε3, ε4), PICALM(rs3851179), GWAS_14q(rs11622883), BIN1(rs744373), and CLU(rs227959 and rs11136000) in patients with MCI and healthy individuals. METHODOLOGY: We performed a cross-sectional, exploratory, descriptive study of a prospective cohort of participants selected by non-probabilistic sampling, evaluated with neurological, neuropsychological, and genetic testing, and classified as cognitively healthy individuals and patients with MCI. Cognition was evaluated with the Neuronorma battery and analysed in relation to the polymorphic variants by means of measures of central tendency, confidence intervals, and nonparametric statistics. RESULTS: We found differences in performance in language and memory tasks between carriers and non-carriers of BIN1, CLU, and CR1 variants and a trend towards poor cognitive performance for PICALM, GWAS_14q, SORL1, and PVRL2 variants; the APOE and TOMM40 variants were not associated with poor cognitive performance. DISCUSSION: Differences in cognitive performance associated with these polymorphic variants may suggest that the mechanisms regulating these genes could have an effect on cognition in the absence of dementia; however, this study was exploratory and hypotheses based on these results must be explored in larger samples.


Assuntos
Disfunção Cognitiva , Proteínas Monoméricas de Montagem de Clatrina , Proteínas Adaptadoras de Transdução de Sinal , Apolipoproteínas E/genética , Clusterina/genética , Cognição , Disfunção Cognitiva/genética , Estudos Transversais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Nucleares , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Receptores de Complemento 3b/genética , Proteínas Supressoras de Tumor
9.
Psychiatr Genet ; 31(6): 216-229, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347684

RESUMO

BACKGROUND: Complement component (3b/4b) receptor 1 (CR1) is an interesting candidate gene which has a close connection with Alzheimer's disease, and its polymorphisms have been reported to link to the late-onset Alzheimer's disease (LOAD) susceptibility. However, the findings of these related studies are inconsistent. Objective To explore the effect of CR1 genetic variants in LOAD susceptibility. MethodsWe searched relevant studies for the period up to 1 November 2020. And odds ratios (ORs) and their 95% confidence intervals (CIs) were utilized to assess the strength of the association. In addition, we carried out a case-control association study to assess their genetic association. RESULTS: Finally, a total of 30 articles with 30108 LOAD cases and 37895 controls were included. Significant allele frequency between LOAD patients and controls was observed in rs3818361 and rs6656401 (rs3818361, T vs. C: OR,1.18; 95% CI, 1.13-1.23; rs6656401, A vs. G: OR, 1.23; 95% CI, 1.10-1.36). Moreover, these results remain significant in subgroup of rs3818361 in Asia or America (OR,1.26; 95% CI,1.06-1.45; OR, 1.18; 95% CI, 1.13-1.24, respectively) and rs6656401 in Europe (OR = 1.26; 95% CI, 1.09-1.42). In addition, the two single nucleotide polymorphisms were proved to significantly increase LOAD risk in the overall population under the dominant model (OR = 1.12; 95% CI, 1.02-1.21; OR = 1.18, 95% CI, 1.15-1.22, respectively). Our case-control study showed that the distribution of rs6656401 genotype was significant (P = 0.000; OR, 6.889; 95% CI, 2.709-17.520), suggesting the A allele of rs6656401 is the risk allele. CONCLUSION: These available data indicate that rs6656401 in CR1 is significant to increase LOAD risk.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Receptores de Complemento 3b/genética
10.
Immunobiology ; 226(3): 152093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34022670

RESUMO

In order to study the mechanisms of COVID-19 damage following the complement activation phase occurring during the innate immune response to SARS-CoV-2, CR1 (the regulating complement activation factor, CD35, the C3b/C4b receptor), C4d deposits on Erythrocytes (E), and the products of complement activation C3b/C3bi, were assessed in 52 COVID-19 patients undergoing O2 therapy or assisted ventilation in ICU units in Rheims France. An acquired decrease of CR1 density on E from COVID-19 patients was observed (Mean = 418, SD = 162, N = 52) versus healthy individuals (Mean = 592, SD = 287, N = 400), Student's t-test p < 10-6, particularly among fatal cases, and in parallel with several parameters of clinical severity. Large deposits of C4d on E in patients were well above values observed in normal individuals, mostly without concomitant C3 deposits, in more than 80% of the patients. This finding is reminiscent of the increased C4d deposits on E previously observed to correlate with sub endothelial pericapillary deposits in organ transplant rejection, and with clinical SLE flares. Conversely, significant C3 deposits on E were only observed among » of the patients. The decrease of CR1/E density, deposits of C4 fragments on E and previously reported detection of virus spikes or C3 on E among COVID-19 patients, suggest that the handling and clearance of immune complex or complement fragment coated cell debris may play an important role in the pathophysiology of SARS-CoV-2. Measurement of C4d deposits on E might represent a surrogate marker for assessing inflammation and complement activation occurring in organ capillaries and CR1/E decrease might represent a cumulative index of complement activation in COVID-19 patients. Taken together, these original findings highlight the participation of complement regulatory proteins and indicate that E are important in immune pathophysiology of COVID-19 patients. Besides a potential role for monitoring the course of disease, these observations suggest that novel therapies such as the use of CR1, or CR1-like molecules, in order to down regulate complement activation and inflammation, should be considered.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , COVID-19/imunologia , Complemento C4b/metabolismo , Eritrócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Complemento 3b/metabolismo , SARS-CoV-2/fisiologia , COVID-19/terapia , Ativação do Complemento , Eritrócitos/patologia , França , Regulação da Expressão Gênica , Humanos , Unidades de Terapia Intensiva , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/uso terapêutico
11.
Genes (Basel) ; 12(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804666

RESUMO

Late-onset Alzheimer's disease (LOAD), the most common cause of dementia, and a huge global health challenge, is a neurodegenerative disease of uncertain aetiology. To deliver effective diagnostics and therapeutics, understanding the molecular basis of the disease is essential. Contemporary large genome-wide association studies (GWAS) have identified over seventy novel genetic susceptibility loci for LOAD. Most are implicated in microglial or inflammatory pathways, bringing inflammation to the fore as a candidate pathological pathway. Among the most significant GWAS hits are three complement genes: CLU, encoding the fluid-phase complement inhibitor clusterin; CR1 encoding complement receptor 1 (CR1); and recently, C1S encoding the complement enzyme C1s. Complement activation is a critical driver of inflammation; changes in complement genes may impact risk by altering the inflammatory status in the brain. To assess complement gene association with LOAD risk, we manually created a comprehensive complement gene list and tested these in gene-set analysis with LOAD summary statistics. We confirmed associations of CLU and CR1 genes with LOAD but showed no significant associations for the complement gene-set when excluding CLU and CR1. No significant association with other complement genes, including C1S, was seen in the IGAP dataset; however, these may emerge from larger datasets.


Assuntos
Doença de Alzheimer/genética , Clusterina/genética , Complemento C1s/genética , Receptores de Complemento 3b/genética , Idade de Início , Ativação do Complemento , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
12.
Commun Biol ; 4(1): 401, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767430

RESUMO

Vitamin D deficiency remains a global concern. This 'sunshine' vitamin is converted through a multistep process to active 1,25-dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages. Here we demonstrate a role for vitamin D in innate immunity. The expression of the complement receptor immunoglobulin (CRIg), which plays an important role in innate immunity, is upregulated by 1,25D in human macrophages. Monocytes cultured in 1,25D differentiated into macrophages displaying increased CRIg mRNA, protein and cell surface expression but not in classical complement receptors, CR3 and CR4. This was associated with increases in phagocytosis of complement opsonised Staphylococcus aureus and Candida albicans. Treating macrophages with 1,25D for 24 h also increases CRIg expression. While treating macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D, leads to an increase in CRIg expression and increases in CYP27B1 mRNA. These findings suggest that macrophages harbour a vitamin D-primed innate defence mechanism, involving CRIg.


Assuntos
Calcitriol/metabolismo , Imunidade Inata/fisiologia , Imunoglobulinas/metabolismo , Macrófagos/metabolismo , Receptores de Complemento 3b/genética , Regulação para Cima/imunologia , Receptores de Complemento 3b/metabolismo
13.
Hum Genomics ; 15(1): 9, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516273

RESUMO

Genome-wide association studies (GWAS) have identified several susceptibility loci of Alzheimer's disease (AD), which were mainly located in noncoding regions of the genome. Meanwhile, the putative biological mechanisms underlying AD susceptibility loci were still unclear. At present, identifying the functional variants of AD pathogenesis remains a major challenge. Herein, we first used summary data-based Mendelian randomization (SMR) with AD GWAS summary and expression quantitative trait loci (eQTL) data to identify variants who affects expression levels of nearby genes and contributed to the risk of AD. Using the SMR integrative analysis, we totally identified 14 SNPs significantly affected the expression level of 16 nearby genes in blood or brain tissues and contributed to the AD risk. Then, to confirm the results, we replicated the GWAS and eQTL results across multiple samples. Totally, four risk SNP (rs11682128, rs601945, rs3935067, and rs679515) were validated to be associated with AD and affected the expression level of nearby genes (BIN1, HLA-DRA, EPHA1-AS1, and CR1). Besides, our differential expression analysis showed that the BIN1 gene was significantly downregulated in the hippocampus (P = 2.0 × 10-3) and survived after multiple comparisons. These convergent lines of evidence suggest that the BIN1 gene identified by SMR has potential roles in the pathogenesis of AD. Further investigation of the roles of the BIN1 gene in the pathogenesis of AD is warranted.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteínas Nucleares/genética , Locos de Características Quantitativas/genética , Proteínas Supressoras de Tumor/genética , Doença de Alzheimer/patologia , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Cadeias alfa de HLA-DR/genética , Humanos , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Receptor EphA1/genética , Receptores de Complemento 3b/genética , Fatores de Risco
14.
PLoS One ; 15(9): e0239196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991610

RESUMO

The aim of the present study was to (1) investigate the relationship between late-onset Alzheimer's disease (AD) and DNA methylation levels in six of the top seven AD-associated genes identified through a meta-analysis of recent genome wide association studies, APOE, BIN1, PICALM, CR1, CLU, and ABCA7, in blood, and (2) examine its applicability to the diagnosis of AD. We examined methylation differences at CpG island shores in the six genes using Sanger sequencing, and one of two groups of 48 AD patients and 48 elderly controls was used for a test or replication analysis. We found that methylation levels in three out of the six genes, CR1, CLU, and PICALM, were significantly lower in AD subjects. The combination of CLU methylation levels and the APOE genotype classified AD patients with AUC = 0.84 and 0.80 in the test and replication analyses, respectively. Our study implicates methylation differences at the CpG island shores of AD-associated genes in the onset of AD and suggests their diagnostic value.


Assuntos
Doença de Alzheimer/genética , Clusterina , Ilhas de CpG , Metilação de DNA , Proteínas Monoméricas de Montagem de Clatrina , Receptores de Complemento 3b , Idoso , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Clusterina/sangue , Clusterina/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina/sangue , Proteínas Monoméricas de Montagem de Clatrina/genética , Receptores de Complemento 3b/sangue , Receptores de Complemento 3b/genética
15.
J Alzheimers Dis ; 78(1): 309-320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986668

RESUMO

BACKGROUND: It is critical to identify individuals at risk for Alzheimer's disease (AD) earlier in the disease time course, such as middle age and preferably well prior to the onset of clinical symptoms, when intervention efforts may be more successful. Genome-wide association and candidate gene studies have identified single nucleotide polymorphisms (SNPs) in APOE, CLU, CR1, PICALM, and SORL1 that confer increased risk of AD. OBJECTIVE: In the current study, we investigated the associations between SNPs in these genes and resting-state functional connectivity within the default mode network (DMN), frontoparietal network (FPN), and executive control network (ECN) in healthy, non-demented middle-aged adults (age 40 -60; N = 123; 74 females). METHODS: Resting state networks of interest were identified through independent components analysis using a template-matching procedure and individual spatial maps and time courses were extracted using dual regression. RESULTS: Within the posterior DMN, functional connectivity was associated with CR1 rs1408077 and CLU rs9331888 polymorphisms (p's < 0.05). FPN connectivity was associated with CR1 rs1408077, CLU rs1136000, SORL1 rs641120, and SORL1 rs689021 (p's < 0.05). Functional connectivity within the ECN was associated with the CLU rs11136000 (p < 0.05). There were no APOE- or PICALM-related differences in any of the networks investigated (p's > 0.05). CONCLUSION: This is the first demonstration of the relationship between intrinsic network connectivity and AD risk alleles in CLU, CR1, and SORL1 in healthy, middle-aged adults. These SNPs should be considered in future investigations aimed at identifying potential preclinical biomarkers for AD.


Assuntos
Doença de Alzheimer/genética , Vias Neurais/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único/genética , Adulto , Alelos , Apolipoproteínas E/genética , Clusterina/genética , Função Executiva , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina/genética , Receptores de Complemento 3b/genética , Fatores de Risco
16.
BMC Genet ; 21(1): 101, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907542

RESUMO

BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.


Assuntos
Receptores de Complemento 3b/genética , Receptores de Complemento 3d/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transcriptoma
17.
Transfusion ; 60(10): 2408-2418, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32870515

RESUMO

BACKGROUND: All antigens described in the KN blood group system are located in the long homologous repeat D (LHR-D) of complement receptor 1 (CR1). While there have been reports that some sera react only with the long homologous repeat C (LHR-C), the antigens in LHR-C are unknown. STUDY DESIGN AND METHODS: Recombinant LHR-C and LHR-D were used to identify antibodies directed against LHR-C of CR1, into which a point mutation was introduced to characterize the underlying blood group antigens. In addition, database studies to define haplotypes of CR1 were performed. RESULTS: Several antisera were identified that were specific against CR1 p.1208His and against CR1 p.1208Arg, located in LHR-C. Fifteen KN haplotypes were found in the Ensembl genome browser. It was shown that due to a linkage disequilibrium anti-CR1 p.1208His may be mistaken for anti-KCAM. CONCLUSION: A novel antithetical KN blood group antigen pair was found at position p.1208 of CR1, for which the names DACY and YCAD are proposed. Antibodies against these two novel antigens seem to contribute to more than a quarter of all KN sera in Europe.


Assuntos
Antígenos de Grupos Sanguíneos , Mutação Puntual , Polimorfismo Genético , Receptores de Complemento 3b , Substituição de Aminoácidos , Anticorpos/química , Anticorpos/imunologia , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/imunologia , Europa (Continente) , Humanos , Domínios Proteicos , Receptores de Complemento 3b/química , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
18.
BMC Med Genet ; 21(1): 181, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919460

RESUMO

BACKGROUND: The complement component (3b/4b) receptor 1 gene (CR1) gene has been proved to affect the susceptibility of Alzheimer's disease (AD) in different ethnic and districts groups. However, the effect of CR1 genetic variants on amyloid ß (Aß) metabolism of AD human is still unclear. Hence, the aim of this study was to investigate genetic influences of CR1 gene on Aß metabolism. METHODS: All data of AD patients and normal controls (NC) were obtained from alzheimer's disease neuroimaging initiative database (ADNI) database. In order to assess the effect of each single nucleotide polymorphism (SNP) of CR1 on Aß metabolism, the PLINK software was used to conduct the quality control procedures to enroll appropriate SNPs. Moreover, the correlation between CR1 genotypes and Aß metabolism in all participants were estimated with multiple linear regression models. RESULTS: After quality control procedures, a total of 329 samples and 83 SNPs were enrolled in our study. Moreover, our results identified five SNPs (rs10494884, rs11118322, rs1323721, rs17259045 and rs41308433), which were linked to Aß accumulation in brain. In further analyses, rs17259045 was found to decrease Aß accumulation among AD patients. Additionally, our study revealed the genetic variants in rs12567945 could increase CSF Aß42 in NC population. CONCLUSIONS: Our study had revealed several novel SNPs in CR1 genes which might be involved in the progression of AD via regulating Aß accumulation. These findings will provide a new basis for the diagnosis and treatment AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Neuroimagem/métodos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Polimorfismo de Nucleotídeo Único , Receptores de Complemento 3b/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Genótipo , Humanos , Masculino , Fragmentos de Peptídeos/metabolismo
19.
PLoS One ; 15(8): e0236968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745140

RESUMO

Many circumstantial evidences from human and animal studies suggest that complement cascade dysregulation may play an important role in pregnancy associated complications including preeclampsia. Deletion of rodent specific complement inhibitor gene, Complement Receptor 1-related Gene/Protein y (Crry) produces embryonic lethal phenotype due to complement activation. It is not clear if decreased expression of Crry during pregnancy produces hypertensive phenotype. We downregulated Crry in placenta by injecting inducible lentivialshRNA vectors into uterine horn of pregnant C57BL/6 mice at the time of blastocyst hatching. Placenta specific downregulation of Crry without significant loss of embryos was achieved upon induction of shRNA using an optimal doxycycline dose at mid gestation. Crry downregulation resulted in placental complement deposition. Late-gestation measurements showed that fetal weights were reduced and blood pressure increased in pregnant mice upon downregulation of Crry suggesting a critical role for Crry in fetal growth and blood pressure regulation.


Assuntos
Desenvolvimento Fetal/fisiologia , Placenta/metabolismo , Receptores de Complemento 3b/genética , Animais , Pressão Sanguínea/genética , Ativação do Complemento/genética , Complemento C3/metabolismo , Inativadores do Complemento/farmacologia , Feminino , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Pré-Eclâmpsia/genética , Gravidez , RNA Interferente Pequeno/genética , Receptores de Complemento/genética , Receptores de Complemento 3b/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...